[image: image17.jpg]

Plotting 3D ShotLink Data on 2D Images

Doug Bracey

February 2006

Introduction

The ShotLink system provides 3D (x,y,z) coordinates indicating the location of golf balls on a golf hole. These coordinates are based on a “world coordinate” system established by the surveyors that mapped the course. They select an origin (i.e., x=10000, y=10000) for their maps such that the typical x and y values for shots turn out to be numbers in the range of about 7000 to 14000 feet. The z value is typically the height above sea level. These values may range from around –100 to 7000 feet depending on the elevation of the course. Thus, a typical coordinate for a golf shot in ShotLink might be x=11546.482, y=9772.503, z=218.944.

To plot these 3D shots on 2D graphics, such as a JPG file used on a web page, or a television graphic, the coordinates of the golf ball must be converted into the coordinate system of the particular artwork being used as background. This background artwork is typically an image file created by a 3D graphics program, such as 3D Studio Max, which is based upon the source mapping data for a particular golf hole or portion of a hole. The image typically shows some view of the golf hole. These graphics programs allow the user to move a virtual camera through the 3D scene until the desired view is obtained, and then this view is saved as a 2D image to be used by TV, the intranet, or some other application.

There are two possible scenarios involved in plotting the golf shots. In the simplest case, the view is directly overhead, looking straight down on the golf hole. This involves a straightforward transformation of the x and y coordinates into the coordinate system of the 2D graphic.

Any other view of the hole which does not involve a direct view down the z axis requires a transformation of the coordinates that will maintain the proper visual perspective in order for the golf shots to appear in the correct location on image. This document will look at both cases.

Overhead Views

With an overhead view of a golf hole, the camera is essentially point straight down the z-axis. This eliminates concerns of perspective in transforming the golf ball coordinates into image coordinates. An example of this type of image in ShotLink can be found in the Stroke Trail Report.

There are three steps in performing the transformation for an overhead view:

1) Rotate the point to the desired orientation

2) Translate the coordinates into the same coordinate system of the background, where one corner is at 0,0.

3) Scale the coordinates from the world values into the image values (i.e., pixels)

The maps from which the world coordinates are obtained are oriented to north, such that the y axis runs north-south, and the x axis runs east-west. Often the artist wants to show the hole image in a different orientation, though. For example, the artist may want the green on the right and the tee on the left of a horizontal orientation. To obtain this, the artist rotates the image by some angle to reach the desired orientation. This rotation angle is provided as part of the metadata associated with a given image.

We will also need to know some reference points on the image that allow us to relate back to world coordinates. This is provided in metadata as the coordinates of the upper left and lower right corners of the image. We also know the width and height of the image in pixels.

To summarize the metadata for overhead views:

X1, Y1: Coordinates of upper left corner

X2, Y2: Coordinates of lower right corner

: Rotation angle

W: width of image in pixels

H: height of image in pixels

In order to calculate the scale factors, we need to know the width and height of the bounding box in world coordinates (i.e., feet). First we’ll rotate the corners of our box around the world origin by the rotation angle. To calculate the new rotated corners we use:

X1rotated = X1 * cos() – Y1 * sin()

Y1rotated = X1 * sin() + Y1 * cos()

X2rotated = X2 * cos() – Y2 * sin()

Y2rotated = X2 * sin() + Y2 * cos()

Now that our box has been rotated, we want to translate it to use the same origin as our image file, where the lower left corner is at x=0, y=0. Since we always use rectangular images, we know the coordinates of the lower left corner are (X1rotated, Y2rotated).

[image: image17.jpg]

In order to translate our corners, we then use the following formulas:

X1translated = X1rotated - X1rotated
Y1 translated = Y1rotated – Y2rotated
X2 translated = X2rotated - X1rotated
Y2 translated = Y2rotated – Y2rotated

Now we calculate the scale factors that will transform the coordinates from feet to pixels.

[image: image1.wmf](

)

(

)

X1

X2

1

2

d

 translate

d

 translate

-

-

=

image

image

X

X

rX

ScaleFacto

[image: image2.wmf](

)

(

)

Y1

Y2

1

2

d

 translate

d

 translate

-

-

=

image

image

Y

Y

rY

ScaleFacto

Now that we have the scale factors, we can calculate the location (in pixels) on our background of image of any point (i.e., golf ball location).

To do this, we rotate, translate and scale the golf ball’s coordinates:

Xballrotated = Xball * cos() – Yball * sin()

Yballrotated = Xball * sin() + Yball * cos()

Xballtranslated = Xballrotated - X1rotated
Yball translated = Yballrotated – Y2rotated
Xballscaled = Xballtranslated * ScaleFactorX

Yball scaled = Yballtranslated – ScaleFactorY

The scaled x and y are provided in units of pixels, which can then be located on the background image.

Sample Calculation

Let’s take a look at an image file and the corresponding metadata for a Stroke Trail Report.

We’ll look at hole #1 at Kapalua as our example. In its natural orientation to North, the hole looks like this:

[image: image3.wmf]

The Stroke Trail Report requires the image to be oriented vertically. On the report, the image will look like this:

[image: image4.png]
The metadata for this hole is given as:

X1 = 6448.352539

Y1 = 11833.260939

X2 = 8336.554140

Y2 = 12433.462622

 = -1.522269 radians

The image is 267 pixels high, and 100 pixels wide.

If we choose a golf ball location on the green, its coordinates might be:

X = 6716

Y = 12118

First, we’ll need to rotate and translate our bounding box in order to calculate the scale factors:

X1Rotated = 6448.352539 * cos(-1.522269) - 11833.260939 * sin(-1.522269)

= 12132.1291

Y1Rotated = 6448.352539* sin(-1.522269) + 11833.260939 * cos(-1.522269)

= -5866.7503

X2Rotated = 8336.554140 * cos(-1.522269) - 12433.462622 * sin(-1.522269)

= 12823.2176

Y2Rotated = 8336.554140 * sin(-1.522269) + 12433.462622* cos(-1.522269)

= -7723.6143

X1Translated = 12132.1291 - 12132.1291 = 0.00

Y1Translated = -5866.7503 – (-7723.6143) = 1856.864

X2Translated = 8336.554140- 12132.1291 = 691.089

Y2Translated = -7723.6143 – (-7723.6143) = 0.0

Now we calculate the scale factors:

ScaleFactorX = (100 – 0) / (691.089- 0.00) = 0.14469926

ScaleFactorY = (0 – 267) / (0.0 - 1856.864) = 0.14379082

Now we can use these scale factors to determine the location in pixels of our golf ball.

Xballrotated = 6716* cos(-1.522269) – 12118* sin(-1.522269) = 12429.516

Yballrotated = 6716* sin(-1.522269) + 12118* cos(-1.522269) = -6120.270

Xballtranslated = 12429.516 - 12132.1291 = 297.387

Yball translated = -6120.270 – (-7723.6143) = 1603.343

Xballscaled = 297.387 * 0.14469926 = 43.032

Yball scaled = 1603.343 – 0.14379082 = 230.546

As expected, this location is near the top center of our 100x267 image, which is where the green is located.

Non-Overhead Views

When viewing the image from an angle other than directly along the z-axis, we need to account for the element of perspective in transforming our x,y, and z coordinates onto the 2D image. This transformation will be described in this section.

The 3D graphics applications tell us some important information about the background image on which we want to plot our golf shots. The specific data we need are:

· The coordinate of the virtual camera

· The coordinate of the target. The target is the point in our 3D scene at which the camera is directly looking.

· The vertical field of view. This is the angle from top to bottom that indicates how much the virtual camera sees in the 3D scene. If you drew two lines, one from the camera to the top of the image, and one from the camera to the bottom of the image, the vertical field of view is the angle between these two lines.

Using this data, which is provided as metadata for any background image, along with knowledge of the size of the image and some linear and matrix algebra, we can project any 3D point onto our 2D image.

Calculating the Projection of 3D Points to 2D Coordinates

The mathematical process by which the 3D golf shot’s coordinate is projected into a 2D coordinate that can be plotted on the background image will now be described.

Here are the values we are given at the beginning of the process:

CameraX – x coordinate of the camera in world coordinates

CameraY – y coordinate of the camera

CameraZ – z coordinate of the camera

Twist – This is the amount the camera is rotated along the line connecting it to the target. If you were photographing someone, for example, and rotated the camera 180º, it would look as if they were upside-down.

TargetX – x coordinate of the target

TargetY – y coordinate of the target

TargetZ = z coordinate of the target

FOV = vertical field of view angle

GolfBallX = x coordinate of the golf shot we want to plot

GolfBallY = y coordinate of the golf shot we want to plot

GolfBallZ = z coordinate of the golf shot we want to plot

ImageH = Height of our background image

ImageW = Width of our background image

The basic steps of the process are:

1) Translate our camera system so that the target point is located at the world origin (0,0,0).

2) Rotate our camera system around the x, y, and z-axes as needed so that the camera is looking straight down the z-axis at the x-y plane. The x-y plane is the 2D surface onto which we’ll project our golf shot.

3) Project our golf shot onto the x-y plane. This is done by extending a line starting at the camera down through the 3D coordinate of the ball, and on down to the x-y plane. This process allows our new 2D coordinate to have the proper perspective from the point of view of the camera.

4) Apply appropriate scale factors to convert from our translated coordinate system to the coordinate system of our background image.

We begin by making the target the center of our new translated coordinate system. This is done by subtracting the x, y, and z values of the target’s world coordinate from our points of interest.

TranslatedCameraX = CameraX – TargetX

TranslatedCameraY = CameraY – TargetY

TranslatedCameraZ = CameraZ – TargetZ

TranslatedGolfBallX = GolfBallX – TargetX

TranslatedGolfBallY = GolfBallY – TargetY

TranslatedGolfBallZ = GolfBallZ – TargetZ

Of course, the translated target’s new coordinates would 0,0,0.

If you drew a line connecting the TranslatedCamera to the TranslatedTarget, that would represent the camera’s view of our golf ball. That line forms the z-axis of our camera system. We want to now rotate our camera system so that its z-axis is now directly lined up with the z-axis of our world coordinate system. To do this, we’ll have to rotate our camera system around the x, y, and z-axes.

To know how much to rotate, our camera system we must calculate the spherical coordinates of the camera relative to the target (i.e., our origin). Instead of using x, y, and z, spherical coordinates use three parameters to describe an object’s location:

Distance – The straight-line distance from the origin to the point, shown below as p, which is also the length of vector P.

Azimuth – The angle between the x-axis and the projection of vector P onto the x-y plane. This projection of vector P is shown below as vector Q. The azimuth angle is shown as .

Elevation – The angle between the z-axis and vector P, shown below as .

[image: image5.png]
To calculate these values, the following equations are used:

[image: image6.wmf]2

2

2

CameraZ

Translated

CameraY

Translated

CameraX

Translated

Distance

+

+

=

[image: image7.wmf]÷

ø

ö

ç

è

æ

=

CameraX

Translated

CameraY

Translated

Azimuth

arctan

[image: image8.wmf]÷

ø

ö

ç

è

æ

=

Distance

CameraZ

Translated

Elevation

arcsin

Now let’s swing our camera system around so that the camera lies on the y-z plane. To do this, we rotate it around the world z-axis by angle , where

= /2 + Azimuth

Now we rotate our camera system around the world x-axis so that it’s pointing straight down the world z-axis. We rotate it by angle , where

 = /2 – Elevation

Finally, we undo any twist angle that may have been used by rotating it once more around the world z-axis by the twist angle,

Now to apply these rotations to our golf ball coordinate, we use some matrix algebra. First we calculate 3D rotation matrices for each of our three angles that we computed above. The formulas for calculating the rotation matrices are shown below:

[image: image9.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

Q

Q

-

Q

Q

=

Q

1

0

0

0

)

cos(

)

sin(

0

)

sin(

)

cos(

)

RotateZ(

[image: image10.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

Q

Q

-

Q

Q

=

Q

)

cos(

)

sin(

0

)

sin(

)

cos(

0

0

0

1

)

RotateX(

We calculate the projection matrix, by calculating a rotation matrix for each of our three rotations (), and then multiplying those matrices together. Finally, we invert the resulting matrix, and multiply it times our golf ball coordinate.

To multiply two 3x3 matrices, A and B:

[image: image11.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

*

ú

ú

ú

û

ù

ê

ê

ê

ë

é

)

2

,

2

(

)

2

,

2

(

)

2

,

1

(

)

1

,

2

(

)

2

,

0

(

)

0

,

2

(

)

1

,

2

(

)

2

,

2

(

)

1

,

1

(

)

1

,

2

(

)

1

,

0

(

)

0

,

2

(

)

0

,

2

(

)

2

,

2

(

)

0

,

1

(

)

1

,

2

(

)

0

,

0

(

)

0

,

2

(

)

2

,

2

(

)

2

,

1

(

)

2

,

1

(

)

1

,

1

(

)

2

,

0

(

)

0

,

1

(

)

1

,

2

(

)

2

,

1

(

)

1

,

1

(

)

1

,

1

(

)

1

,

0

(

)

0

,

1

(

)

0

,

2

(

)

2

,

1

(

)

0

,

1

(

)

1

,

1

(

)

0

,

0

(

)

0

,

1

(

)

2

,

2

(

)

2

,

0

(

)

2

,

1

(

)

1

,

0

(

)

2

,

0

(

)

0

,

0

(

)

1

,

2

(

)

2

,

0

(

)

1

,

1

(

)

1

,

0

(

)

1

,

0

(

)

0

,

0

(

)

0

,

2

(

)

2

,

0

(

)

0

,

1

(

)

1

,

0

(

)

0

,

0

(

)

0

,

0

(

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

2

,

2

1

,

2

0

,

2

2

,

1

1

,

1

0

,

1

2

,

0

1

,

0

0

,

0

2

,

2

1

,

2

0

,

2

2

,

1

1

,

1

0

,

1

2

,

0

1

,

0

0

,

0

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

To invert a matrix A:

[image: image12.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

)

2

,

2

(

)

2

,

1

(

)

2

,

0

(

)

1

,

2

(

)

1

,

1

(

)

1

,

0

(

)

0

,

2

(

)

0

,

1

(

)

0

,

0

(

A

A

A

A

A

A

A

A

A

InverseA

So, to create our projection matrix, we use the following formula:

ProjMatrix = Inverse[RotateZ() * RotateX() * RotateZ()]

Now we multiply this projection matrix with our golf ball coordinate to get our new coordinate:

ProjectedGolfBallX = TranslatedGolfBallX * ProjMatrix(0,0) + TranslatedGolfBallY * ProjMatrix(1,0) + TranslatedGolfBallZ * ProjMatrix(2,0)

ProjectedGolfBallY = TranslatedGolfBallX * ProjMatrix(0,1) + TranslatedGolfBallY * ProjMatrix(1,1) + TranslatedGolfBallZ * ProjMatrix(2,1)

ProjectedGolfBallZ = TranslatedGolfBallX * ProjMatrix(0,2) + TranslatedGolfBallY * ProjMatrix(1,2) + TranslatedGolfBallZ * ProjMatrix(2,2)
Phew! Now all that is left to do is to scale our projected coordinate to our particular background image.

We know the height and width of our background image, usually in pixels. We need to know the ratio of our coordinate in world coordinates to our coordinate in image coordinates. This is proportional to the ratio of the distance to the image and the distance to the point.

Distance to Point = Distance – ProjectedGolfBallZ

Distance to Image = (ImageH/2) / (tan(FOV/2)

ScaleFactor = Distance to Image / Distance to Point

Finally, we apply the ScaleFactor to our projected coordinates to get them in screen coordinates.

ScreenX = ImageW/2 + ProjectedGolfBallX * ScaleFactor

ScreenY = ImageH/2 - ProjectedGolfBallY * ScaleFactor

Since we are making a 2D image, of course, there is no z coordinate.

SAMPLE CALCULATION

Let’s look at an example projection calculation. At the end, we’ll compare the calculation of screen coordinates for Tournament Tracker vs. coordinates for BRINT.

Here are the values from our camera metadata:

CameraX – 7456.338

CameraY – 12008.865

CameraZ – 2341.593

Twist – 302.852(
TargetX – 7460.649

TargetY – 12001.406

TargetZ = 243.661

FOV = 21.292(
We’ll plot a golf ball at the following coordinates on our image:

GolfBallX = 6650.75

GolfBallY = 12131.01

GolfBallZ = 200.

The background image associated with the above camera metadata is 736 pixels wide, and 334 pixels tall.

[image: image13.wmf]

The coordinate system for Internet art starts with 0,0 in the upper left corner. Y values increase as you move down from that point, and X values increase as you move to the right of the point.

First, we calculate our translated camera and golf ball coordinates.

TranslatedCameraX = 7456.338 – 7460.649 = -4.311

TranslatedCameraY = 12008.865– 12001.406 = 7.459

TranslatedCameraZ = 2341.593– 243.661 = 2097.932

TranslatedGolfBallX = 6650.75 – 7460.649 = -809.899

TranslatedGolfBallY = 12131.01 – 12001.406 = 129.604

TranslatedGolfBallZ = 200 – 243.661 = -43.661

Now, let’s get our translated camera’s location in spherical coordinates so we can prepare to rotate it:

[image: image14.wmf]95

.

2097

2

932

.

097

2

2

459

.

7

2

311

.

4

-

Distance

=

+

+

=

[image: image15.wmf]094852

.

2

4.311

-

7.459

arctan

Azimuth

=

÷

ø

ö

ç

è

æ

=

 radians

[image: image16.wmf]56669

.

1

2097.95

2097.932

arcsin

Elevation

=

÷

ø

ö

ç

è

æ

=

 radians

So now our rotation angles are:

 = /2 – 1.56669 = 0.004106 radians

= /2 + 2.094852 = 3.665648 radians

/180 = 5.285765 radians

Now we calculate our three rotation matrices:

cos(5.285765)
sin(5.285765)
0

RotateZ(

sin(5.285765)
cos(5.285765)
0

0

0

1

Calculating yields:

	0.542471
	-0.840075
	0

	0.840075
	0.5424709
	0

	0
	0
	1

cos(3.665648)
sin(3.665648)
0

RotateZ() =

sin(3.665648)
cos(3.665648)
0

0

0

1

Calculating yields:

	-0.8658
	-0.500396
	0

	0.500396
	-0.865797
	0

	0
	0
	1

1

0

0

RotateX() =

0

cos(0.004106)
sin(0.004106)

0

-sin(0.004106)
cos(0.004106)

Calculating yields:

	1
	0
	0

	0
	0.9999916
	0.0041065

	0
	-0.004106
	0.9999916

Multiplying RotateZ(by RotateX() yields:

RotateZ(RotateX() =

	0.542471*1 + -0.840075*0 + 0*0
	0.542471*0 + -0.840075*0.9999916 + 0*-0.004106
	0.542471*0 + -0.840075*-0.004106 + 0*0.9999916

	0.840075*1 + 0.5424709*0 + 0*0
	0.840075*0 + 0.5424709*0.9999916 + 0*-0.004106
	0.840075*0 + 0.5424709*0.0041065 + 0*0.9999916

	0*1 + 0*0 + 1*0
	0*9 + 0*0.9999916 + 1*-0.004106
	0*0 + 0*0.0041065 + 1*0.9999916

Calculating yields:

	0.542471
	-0.840068
	-0.00345

	0.840075
	0.5424663
	0.0022276

	0
	0
	0.9999916

Now we multiply the above matrix times the RotateZ() matrix:

RotateZ()RotateX() * RotateZ() =

	0.542471*-0.8658 + -0.840068*0.500396 + -0.00345*0
	0.542471*-0.500396 + -0.840068*-0.865797 + -0.00345*0
	0.542471*0+ -0.840068*0+ -0.00345*1

	0.840075*-0.8658 + 0.5424663*0.500396 + 0.0022276*0
	0.840075*-0. 500396+ 0.5424663*-0.865797+ 0.0022276*0
	0.840075*0+ 0.5424663*0+ 0.0022276*1

	0*-0.8658 + 0*0.500396 + 0.9999916*0
	0*-0.500396 + 0*-0.865797 + 0.9999916*0
	0*0+ 0*0 + 0.9999916*1

Calculating yields:

	-0.89004
	0.4558779
	-0.00345

	-0.45589
	-0.890035
	0.0022276

	0
	0
	0.9999916

Inverting the matrix yields:

	-0.89004
	-0.455886
	0

	0.455878
	-0.890035
	0

	-0.00345
	0.0022276
	0.9999916

Now we can calculate the projected coordinates of our golf ball:

ProjectedGolfBallX = -809.899*-0.89004 + 129.604*0.455878 + -43.661* -0.00345 = 780.0732

ProjectedGolfBallY = -809.899*-0.455886 + 129.604*-0.890035 + -43.661*0.0022276 = 253.7725

ProjectedGolfBallZ = -809.899*0 + 129.604*0+ -43.661*0.9999916

= -43.6606

Now we’ll scale these to our image coordinates:

Distance to Point = 2097.95 – (-43.6606) = 2141.6106

Distance to Image = (334 / 2)/(tan(21.292 / 2)) = 888.41125

ScaleFactor = 888.41125 / 2141.6106 = 0.4148332

ScreenX = 736 / 2 + 780.0732*0.4148332 = 691.6 pixels

ScreenY = 334 / 2 - 253.7725*0.4148332 = 61.7 pixels

When transforming points for display on television with the BRINT, the calculations are the same until the screen coordinates are computed. Here we must also take into account the fact that some video systems do not use square pixels. In this case, we are given a PIXEL_ASPECT_RATIO as part of our camera metadata.

We account for this first in computing Distance to Image:

Distance to Image = (ImageH/2) / (PIXEL_ASPECT_RATIO * tan(FOV/2)

We also take it into account when computing the screen y coordinate:

ScreenY = ImageH/2 - ProjectedGolfBallY * ScaleFactor*PIXEL_ASPECT_RATIO

Camera

Golf ball

(x,y,z)

ProjectedGolfBallZ

FOV/2

Screen plane

ImageH/2

Distance

Distance To Image

1) Rotate

2) Translate

x

y

Original orientation

(X1rotated, Y1rotated)

(X2rotated, Y2rotated)

PAGE
17

_1198386626.unknown

_1200838788.doc
[image: image1.png]

_1200892710.unknown

_1199015721.unknown

_1199015946.unknown

_1200837833.unknown

_1199015893.unknown

_1199015237.doc
[image: image1.png]

_1198386624.unknown

_1198386625.unknown

_1198386622.unknown

_1198386623.unknown

_1198386621.unknown

